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Abstract—Recently, left-handed metamaterials 
(LHM’s) have been demonstrated with an effective 
negative index of refraction and with antiparallel 
group and phase velocities for microwave radiation 
over a narrow frequency bandwidth. In order to 
take advantage of these characteristics for practical 
applications, it will be beneficial to develop LHM’s 
with increased frequency bandwidth response and 
lower losses. In this paper a commercial three-
dimensional electromagnetic simulation code is used 
to explore the effects of geometry parameter 
variations on the frequency bandwidth of an LHM 
at microwave frequencies. Utilizing an optimizing 
routine in the code, a geometry was generated with a 
bandwidth more than twice as large as the original 
geometry. 
 

I. INTRODUCTION 
 In recent years the existence of left-handed 
metamaterials (LHM’s), as first postulated by Veselago 
[1], has been demonstrated [2]. LHM’s, also known as 
Negative Index Material (NIM) and Double Negative 
Metamaterial (DNM), are an engineered material with a 
grid of very thin wires that can behave like a plasma 
medium to provide an effective negative electric 
permittivity [3], [4] interspersed with a periodic array of 
split ring resonators to provide an effective negative 
magnetic permeability [5]. In the narrow frequency 
range for which both these parameters are negative, the 
index of refraction has a negative value and the group 
and phase velocities of electromagnetic radiation within 
the material are antiparallel. These characteristics have 
the potential for enabling LHM to be used in a variety 
of applications, such as superlenses and high pass filters 
[6]. However, in order to take advantage of these 

 
 

characteristics for practical applications, it will be 
beneficial to develop LHM’s with increased frequency 
bandwidth response and lower losses [7]. 

The commercial codes CST Microwave Studio 
(MWS) and CST Design Studio (DS) [8] were used to 
simulate the dispersion and scattering parameters of an 
LHM. Variations in the geometry were investigated to 
determine the effects on frequency bandwidth. Using 
the optimizer of MWS, the LHM geometry was 
optimized for maximum percent bandwidth. The 
accuracy of MWS and DS for simulating LHM as well 
as the effectiveness of the internal optimizer has been 
previously demonstrated [9], [10].  

 

II. SIMULATION 

A. Standard LHM Structure 
Initially a geometry similar to the LHM of Shelby, et 

al. [11], which consists of a grid of metallic split ring 
resonators (SRR’s) and wires on interlocking sheets of 
circuit board, was modeled. A semi-infinite grid was 
simulated in MWS’s Eigenmode Solver by modeling a 
unit cell as shown in figure 1 with periodic boundary 
conditions in the x- and y-directions. Periodic boundaries 
connect two opposite boundaries so that the calculation 
domain is simulated to be periodically expanded in the 
corresponding direction. Electric boundaries were used 
in the z-direction to simulate a metal encasing. Electric 
boundaries operate like a perfect electric conductor; all 
tangential electric fields and normal magnetic fluxes are 
set to zero. A mesh setting of 15 gridlines per 
wavelength, which yielded a 35×35×23 grid, was 
determined to offer the best compromise between 
accuracy and computation time. 
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Figure 1.—Unit cell of the initial left-handed 

metamaterial (LHM) geometry. The dimensions (mm) 
are as follows: ax = 5, ay = 5, az = 3.3333, c = 0.25, 

d = 0.3, gi = 0.46, go = 0.46, and w = 2.62. Not  
shown are circuit board thickness, b = 0.25,  

dielectric constant, εr = 3.4, and metal  
thickness, t = 0.03. 

 
The dispersion was calculated with the phase shift in the 
y-direction held constant at 0° while the phase shift in 
the x-direction was varied between 0° and 180°. The 
resulting dispersion is shown in figure 2 with a left-
handed pass band from 10.92 – 11.47 GHz, or a 4.9% 
bandwidth. The negative slope of the dispersion curve 
demonstrates that the group velocity is negative, a 
characteristic of an LHM. 

It is also necessary to demonstrate transmission 
through the LHM. To obtain the scattering parameters 
(S-parameters) of the LHM, the Transient Solver of 
MWS and DS were used. The Transient Solver 
calculates the development of fields through time at 
discrete locations and at discrete time samples. It 
calculates the transmission of energy between various 
ports of the investigated structure. DS enables the 
breaking down of complex systems into smaller 
components, each described by an S-matrix. All the 
matrices are then combined in DS to calculate the 
complete system’s behavior. Waveguide ports were 
added at the x-boundaries of the LHM in MWS. The 
x-boundary conditions were open to accommodate the 
ports, the y-boundary conditions were magnetic, and the 
z-boundary conditions were electric. A Gaussian 
stimulation signal was used to excite the input port. The 
S-parameter results were imported into DS and an array 
of 20 unit cells was created. The reflection coefficients, 
S11, and the transmission coefficients, S21, of the array 

are shown in figure 3 with the transmission centered at 
11.15 GHz. Also shown in figure 3 is the frequency 
range of the pass band from the Eigenmode 
computation. The dispersion and S-parameter data 
match within 1% at -30 dB. 

B. Geometry Variations and Optimization 
Variations to individual dimensions of the geometry 

of the LHM unit cell were made to determine their 
effect on the bandwidth of the structure. The most 
interesting are noted in table 1.  

In order to optimize the LHM frequency bandwidth 
of the structure, it is necessary to consider all the critical 
dimensions synergistically. This was done by using the 
following dimensions as variables in a goal function for 
MWS’s optimizer: unit cell length in the x direction, 
ax; unit cell length in the y direction, ay; unit cell length 
in the z direction, az; distance between the split rings, 
d; gap in the inner ring of the SRR, gi; gap in the outer 
ring of the SRR, go; and width of the SRR, w. The 
optimizer aims to minimize the goal function, gfc, 
which was defined as 
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Figure 2.—The dispersion of the LHM 
unit cell shown in figure 1. 

 
 

S-parameters for LHM Array
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Figure 3.—Simulated S-parameters for the original 
LHM array. The left-handed pass band predicted by 
the Eigenmode Solver is shown with dashed lines. 

 

d 

gi 

w 

c 

az 

ay 
ax 

go 



NASA/TM—2004-213403 3
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where m0 and m180 are the frequencies at 0° and 180°, 
respectively, determined by the Eigenmode Solver. 

Before the optimization run, two changes were made 
from the basic structure in order to decrease losses. The 
metal width, c, was decreased from 0.25 mm to 0.1 mm 
to minimize the metal losses. Also, RT/duroid 5880 
[12] was selected for the circuit board, which has a loss 
tangent a factor of 16 times smaller than the original 
material used, to decrease the dielectric losses. These 
two changes resulted in more than a factor of ten 
decrease to the overall losses at the center frequency of 
11.2 GHz.  

 

Table 1.—Percent Bandwidth for 
Parameter Variations. 

Parameter Original 
Value 

New 
Value 

%B 

standard - - 4.9 
ax = ay 5 4 6.2 

az 3.3333 3 6.6 
c 0.25 0.1 5.2 
d 0.3 0.45 7.6 
εr 3.4 2 5.0 
go 0.46 0 9.5 

gi=go 0.46 0.69 4.8 
 

 
Figure 4.—The optimized LHM geometry. The 

dimensions (mm) are as follows: ax = 3.82, ay = 3.82,  
az = 2.93, c = 0.1, d = 0.44, gi = 0.43, go = 0.31,  

w = 2.6, b = 0.25, εr = 2.2, and t = 0.03. 

The resulting optimized geometry operated at a 
center frequency, fc = 8.32 GHz. For comparison 
purposes we wanted to scale this geometry to operate at 
the same center frequency as the original design. While 
holding constant the circuit board thickness, metal 
thickness, and dielectric constant, the remaining 
parameters were scaled down to increase the operating 
frequency. The resulting geometry is shown in figure 4 
and the corresponding dispersion of the optimized unit 
cell is shown in figure 5. The optimized unit cell has a 
LH pass band from 10.57 – 11.82 GHz, or a percent 
bandwidth of 11.2%, which is a factor of 2.3 times 
larger than that of the original geometry. The 
S-parameters of the optimized array are shown in figure 
6. Also shown in the figure is the frequency range of the 
pass band from the Eigenmode computation. Although 
agreement is not as close as in the original LHM array, 
the -30 dB points of the S-parameter data are within 
3.5% of the low frequency end of the eigenvalue 
computation and within 1% of the high frequency end. 
The S-parameter data indicates the percent bandwidth 
of the  

 

Dispersion of Optimized LHM Unit Cell

10.4

10.8

11.2

11.6

12

0 30 60 90 120 150 180

Phase Shift (degrees)

Fr
eq

ue
nc

y 
(G

H
z)

 
Figure 5.—The dispersion of the optimized LHM 

unit cell shown in figure 4. 
 
 

S-parameters for Optimized LHM Array
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Figure 6.—Simulated S-parameters for the optimized 
LHM array. The left-handed pass band predicted by 
the Eigenmode Solver is shown with dashed lines. 
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optimized geometry is a factor of 2.1 times larger than 
that of the original geometry and confirms the 
bandwidth enhancement of the optimized geometry. 

III. CONCLUSION 
The bandwidth of a LHM has been maximized using 

a commercial 3–D electromagnetic field simulation 
software. The optimized geometry has a bandwidth 
more than twice as large as the original geometry. The 
technique used can be applied to optimize a variety of 
geometries for any user-defined goal function. 
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